General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer.

نویسندگان

  • Q Sun
  • A Mayeda
  • R K Hampson
  • A R Krainer
  • F M Rottman
چکیده

The general splicing factor SF2/ASF binds in a sequence-specific manner to a purine-rich exonic splicing enhancer (ESE) in the last exon of bovine growth hormone (bGH) pre-mRNA. More importantly, SF2/ASF stimulates in vitro splicing of bGH intron D through specific interaction with the ESE sequences. However, another general splicing factor, SC35, does not bind the ESE sequences and has no effect on bGH intron D splicing. Thus, one possible function of SF2/ASF in alternative and, perhaps, constitutive pre-mRNA splicing is to recognize ESE sequences. The stimulation of bGH intron D splicing by SF2/ASF is counteracted by the addition of hnRNP A1. The relative levels of SF2/ASF and hnRNP A1 influence the efficiency of bGH intron D splicing in vitro and may be the underlying mechanism of this alternative pre-mRNA processing event in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the SF2/ASF binding sites in the bovine growth hormone exonic splicing enhancer.

Splicing of the last intron (intron D) of the bovine growth hormone pre-mRNA requires the presence of a downstream exonic splicing enhancer (ESE). This enhancer is contained within a 115-nucleotide FspI-PvuII (FP) fragment located in the middle of the last exon (exon 5). Previous work showed that the splicing factor SF2/ASF binds to this FP region and stimulates splicing of intron D in vitro. H...

متن کامل

An erythroid differentiation-specific splicing switch in protein 4.1R mediated by the interaction of SF2/ASF with an exonic splicing enhancer.

Protein 4.1R is a vital component of the red blood cell membrane cytoskeleton. Promotion of cytoskeletal junctional complex stability requires an erythroid differentiation stage-specific splicing switch promoting inclusion of exon 16 within the spectrin/actin binding domain. We showed earlier that an intricate combination of positive and negative RNA elements controls exon 16 splicing. In this ...

متن کامل

Alternative splicing of CD200 is regulated by an exonic splicing enhancer and SF2/ASF

CD200, a type I membrane glycoprotein, plays an important role in prevention of inflammatory disorders, graft rejection, autoimmune diseases and spontaneous fetal loss. It also regulates tumor immunity. A truncated CD200 (CD200(tr)) resulting from alternative splicing has been identified and characterized as a functional antagonist to full-length CD200. Thus, it is important to explore the mech...

متن کامل

The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.

The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, A...

متن کامل

Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.

Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 7 12B  شماره 

صفحات  -

تاریخ انتشار 1993